
Detecting Network Vulnerabilities Through
Graph Theoretical Methods

Patrick Cesarz
Villanova University

Gina-Maria Pomann
The College of New Jersey

Luis de la Torre
University of California, Davis

Greta Villarosa
The College of William and Mary

Tamara Flournoy
University of Michigan

Ali Pınar
Lawrence Berkeley National Laboratory

Juan Meza
Lawrence Berkeley National Laboratory

October 18, 2007

Abstract

Identifying vulnerabilities in power networks is an important prob-
lem, as even a small number of vulnerable connections can cause bil-
lions of dollars in damage to a network. In this paper, we investigate
a graph theoretical formulation for identifying vulnerabilities of a net-
work. We first try to find the most critical components in a network
by finding an optimal solution for each possible cutsize constraint for
the relaxed version of the inhibiting bisection problem, which aims to
find loosely coupled subgraphs with significant demand/supply mis-
match. Then we investigate finding critical components by finding a
flow assignment that minimizes the maximum among flow assignments
on all edges. We also report experiments on IEEE 30, IEEE 118, and
WSCC 179 benchmark power networks.

1 Introduction

The electric power grid network is susceptible to power outages that may
potentially cause severe blackouts. A striking example is the August 14,
2003 blackout in US northeast and Canada, which affected an estimated 50
million people, causing over $6 billion in damage, and leaving many areas
without power for two days [3]. Because of the size and complexity of the
power network, it is extremely difficult to quickly identify the power lines

1

that cause the most damage when cut from the network. Thus, it is imper-
ative to be able to pinpoint the most critical power lines in a network so
that vulnerable components may be fortified in order to preempt disasters.
As such, the purpose of this research is to formulate and analyze efficient
methods for detecting critical lines in a power network. While the focus of
our work is power networks, our techniques are applicable to other systems
such as the transportation and communication systems. For example, Auro
et. al. investigate network inhibition in the context of computer networks,
primarily for finding vulnerabilities of public computer networks that may
have low bandwidth connections and low connectivity areas [1]. In these
networks, finding vulnerable, loosely connected components can prevent sig-
nificant revenue loss to internet service providers and commercial websites
from major bandwidth loss.

The principal problem that we investigate is the problem of network inhi-
bition. This problem seeks to maximally inhibit the functioning of a network,
by finding a subset of edges of a network of some (usually small) fixed size
of connections that when removed from a power network together maximally
inhibit the total flow through the network. The network inhibition problem
is NP-complete [5], thus we need to resort to heuristics for a practical solu-
tion, since time for an optimal solution can scale exponentially with the size
of the network.

An approximation of the network inhibition problem is the inhibiting
bisection problem [6]. The inhibiting bisection problem looks for a bisection
of a network that maximally inhibits its function. In contrast, the solution
to the network inhibition problem does not necessarily define a cut in the
network. The problem seeks to minimize the number of lines cut in a network
while maximizing the supply/demand equilibrium between the two sections.
Inhibiting bisection finds a bisection that places generators and consumers
on different bisections as much as possible. However, it is constrained by the
number of edges that are between these components. The inhibiting bisection
problem is also NP-complete [6].

We investigate a polynomial-time relaxation of inhibiting bisection in
order to estimate solutions to the problem and find loosely connected com-
ponents of a network. In the following report, we investigate efficient ways
of approximating inhibiting bisection utilizing the relaxed version. In addi-
tion, we attempt to use inhibiting bisection as a way to find the most critical
connections in a network and consider an alternative constrained linear op-
timization problem to rank edges in order of criticality.

2 The Inhibiting Bisection Problem

We model electric power grid networks as undirected graphs. A graph
G = (V, E) is defined by a set of vertices V and edges E connecting ver-
tices. Vertices model consumers and producers of power, and edges model

2

the connections between consumers and producers. Both vertices and edges
have weights assigned to them. Vertex weights correspond to supply and
demand values, with positive values indicating supply and negative values
indicating demand. Edge weights denote edge capacities, i.e. the maximum
amount of power that can flow through the edge. Our units of power are
normalized values. In Figure 1, we see a small network with edge capacities
and supply and demand values. In this figure, generator vertices are repre-
sented as diamonds, and consumer vertices are represented as circles. Note
that supply and demand values must add up to zero, as total supply equals
total demand.

Figure 1: A small network represented as a graph

Inhibiting bisection problem has been introduced by Pinar et. al. [6],
to identify loosely-connected components of a graph with significant genera-
tion/load mismatch. That is, with inhibiting bisection we can find a subset
of the network that can be disconnected from the rest with only few edge
removals. To define the inhibiting bisection problem, we define a few terms.
Given a graph G = (V, E), a bisection is a partition of V into two disjoint
sets, V1 and V2. The cut set C(V1, V2) is the set of edges in E that pass
between the bisection, i.e. C(V1, V2) = {(i, j) : i ∈ V1, j ∈ V2}. Note that V1

and V2 need not be connected subgraphs. Define wi as the weight of vertex
vi. The weight of a set of vertices is the sum of the weights of all the vertices
in the set, i.e. W (V1) =

∑
vi∈V1

wi). Given a bisection of V into V1 and
V2, the imbalance of the bisection is the difference in the weights of V1 and
V2, or |W (V1) − W (V2)|. Finally, the cutsize of a bisection is defined to be
the number of edges in the cutset, or |C(V1, V2)|. The inhibiting bisection
problem is defined as follows:

Given a graph G = (V, E) and a cutsize constraint of B, find a partition
of V into V1 and V2 that maximizes the imbalance |W (V1) − W (V2)| subject
to the cutsize |C(V1, V2)| ≤ B.

Alternatively, the problem may be defined as finding a minimum cut size
subject to a minimum constraint on the imbalance value.

2.1 Relaxed Version of Inhibiting Bisection

Because the inhibition bisection problem is NP-complete, we look for an
approximation to the problem. Hence, we investigate of the relaxed version of

3

inhibiting bisection. The relaxed version of the problem uses a dual objective
function, and takes an input parameter, ε. Given a value of ε ∈ [0, 1], the
relaxed inhibiting bisection is the following minimization problem:

min ε|C(V1, V2)| − (1− ε)|W (V1)−W (V2)|. (1)

In this formulation, both the cutsize |C(V1, V2)| and the generation-load mis-
match |W (V1) − W (V2)| are in the objective. The choice of ε weights the
importance of the objectives. A value of ε closer to 1 gives more importance
to minimizing cutsize than maximizing imbalance, and a value of ε closer to
0 indicates that maximizing imbalance bears more importance than minimiz-
ing cutsize. As ε increases from 0 to 1, both cutsize and imbalance decrease
monotonically.

3 Inhibiting Bisection Approximation

In this section, we will show how the relaxed version of the inhibiting bisection
problem can be solved using a maximum flow solver, as originally described
by Pinar et al. [6]. Given a graph G = (V, E) with edge capacities and two
specified vertices s (source) and t (terminal), the problem of maximum flow
is to find the maximum amount of flow that can be carried from the source to
the terminal constrained by the capacities of the edges. A minimum cut of a
graph is a bisection of the graph such that s and t are on different partitions
and the sum of the capacity on the edges in the cut set is minimized. It is a
well-known duality result that the minimum cut value of a graph is equivalent
to the maximum flow value.

To formulate relaxed inhibiting bisection as a maximum-flow minimum-
cut problem, we use the following transformation.

• Assign a capacity of ε to each edge in the given network.

• Add vertices s and t, and connect each supply vertex vi to s by an edge
with a capacity of 2|(1 − ε)wi|, and connect each demand vertex vi to
t, by an edge with a capacity of −2|(1− ε)wi|.

Pinar et al. [6] proved that the minimum cut solution is the bisection
corresponding to the optimal solution of the given relaxed inhibiting bisection
problem. In Figure 2, we see the graph of Figure 1 transformed to a max-flow
min-cut problem for solving the inhibiting bisection problem with ε = 0.5.

We used the implementation of Boykov and Kolmogorov [2] as the max-
flow solver. Recall that both the cutsize and the imbalance decrease mono-
tonically with increasing ε. We can use this observation to approximate the
original version of the inhibiting bisection problem. We optimize either im-
balance or cutsize with a constraint on the other by iteratively solving the
relaxed version of the inhibiting bisection problem with different values of
ε. The iterative process helps us determine the maximum imbalance for a

4

Figure 2: Figure 1 reformulated as max-flow min-cut with ε = 0.5

desired cutsize, or the minimum cutsize for a desired imbalance. We explored
two methods that would perform the iterative search for ε values: a binary
search method and a secant method.

The binary search method and secant method are both iterative methods
used to search for where a given function attains a certain value (usually
zero). In this case, we are interested in finding a value of ε for which the ob-
jective function returns a given cutsize bound. In the binary search method,
the search interval is halved after every iteration. This halving is performed
based solely on the cutsize computed at the current value of ε. The secant
method, as described in [4], takes into account how far off the cutsizes are
from the cutsize constraint to compute the next ε value by drawing a secant
line from the points at the boundary of the current search interval. Since the
secant method uses more information to update ε, we expected this method
to converge faster than the binary search method. This, however, was not
the case in our experiments.

We tested both search methods to solve the inhibiting bisection problem
for all feasible cutsize constraints of a given graph. We used the IEEE 30
bus graph, the IEEE 118 bus graph, the WSCC 179 graph, and a smaller
example graph (with 7 vertices and 8 edges). We first considered the number
of iterations each algorithm took for each cut size constraint. In the small
example, both algorithms worked equally well. In the 30 bus graph, the
program solves the inhibiting bisection problem for 18 cutsize constraints.
The binary search terminated in fewer iterations than the secant method
in 5 of these cutsizes, and the secant method performed better in 8 cutsize
constraints. For the 118 bus graphs, the binary search was better in 31
cutsize constraints, and the secant method was better in 33 test cases. In
the WSCC 179 graph, the binary search method performed better in 34, and
the secant method performed better in 54 cases. Based on this analysis, it is

5

hard to declare a clear winner.
We then considered the total number of iterations each method uses to

find the cutsizes for all feasible cutsize constraints. These data are summa-
rized in Table 3.

Bisection Secant
IEEE 30 138 146
IEEE 118 501 574
WSCC 179 801 0

Table 1: Number of iterations for bisection and secant methods

It seems that as the size of the graph increases, the difference in the two
method’s performances also increases. If this pattern continues, we expect
the secant method to perform worse than the binary search method for larger
graphs.

Each algorithm was also timed for the 118 graph and the 179 graph.
Table 3 displays the time it takes the program to run in seconds.

Bisection Secant
IEEE 118 .06 .08
WSCC 179 .09 .10

Table 2: Elapsed time in seconds for secant and bisection method for finding
all cutsizes

Both algorithms can use the exact same stopping criteria. An easy stop-
ping criteria would be the number of iterations (e.g. we used 20 as an upper
bound on the number of iterations). However, this condition can be im-
proved. Given a bound B, if we find a bisection with cutsize equal B for the
relaxed inhibiting bisection problem, then we can conclude that the optimal
answer is found, and the algorithm can terminate, since any other solution
will either violate the constraint on the cutsize, or will provide a solution
at most as good as the present one. The following theorem formalizes this
claim.

Theorem 1 In any graph, two optimal solutions to the relaxed inhibiting
bisection problem have the same cutsize if and only if they have the same
imbalance.

Proof: We prove that equal imbalances imply equal cutsizes, and the
converse is proved similarly. Let us call the objective function of the relaxed
inhibiting bisection problem fε(C, i) where ε is the parameter, C is the size of

6

the set of the edges cut (cutsize) and i is the imbalance. For a given ε ∈ [0, 1]
we are interested in finding the cutsize and imbalance that minimizes

fε(C, i) = ε(C)− (1− ε)i.

Let ε1, ε2 ∈ [0, 1], ε1 6= ε2, (C1, i) be the minimizer of fε1 , and (C2,i) be the
minimizer of fε2 . That is two different values of ε yield the same imbalance.
We need to show C1 = C2 in this case. Assume the contrary, and without
loss of generality, let C1 > C2. Since (C1, i) is a minimizer of fε1 , we have

fε1(C1, i) ≤ fε1(C2, i)

ε1(C1)− (1− ε1)I ≤ ε1(C2)− (1− ε1)I

ε1(C1) ≤ ε1(C2)

C1 ≤ C2,

which contradicts the assumption that C1 > C2. �
Observe that the converse is also true: bisections with the same imbalance

have equal cutsizes. This fact allows the algorithm to terminate with an
optimal solution, once it finds a bisection with cutsize equal to the cutsize
constraint.

If the search interval is sufficiently small, the algorithm stops. Our imple-
mentation terminates if the interval is less than 10−6. Note that this gap is
the reason why we have an approximation algorithm, not an exact solution,
and the gapsize is a bound on the accuracy of our approximation. All these
stopping conditions are conventional for any binary search or secant method
problem, but due to the nature of cutsize as a function of ε, we can add
another stopping condition. From Figure 3 it is clear that this function is
piecewise constant (it is a step function) and monotonically decreasing. As ε
increases, minimizing cutsize is more important than maximizing imbalance.
This explains why the function is monotonically decreasing. It is piecewise
constant because in any graph there are only a finite number of minimum
cuts. In the 30 bus graph, for example, minimum cuts have cutsizes of 1, 5,
9, 11, and 14 edges.

Due to the nature of the graph, the secant line grows steeper after each
iteration. If the secant method (or bisection method) are close to converging,
then the secant line will be between two steps. At this point in the algorithm,
the difference in cutsizes between the two points is constant, but the search
interval for ε is decreasing. Thus, the secant line grows steeper after each
iteration. If this line is sufficiently steep, then there is less of a chance that
another smaller step will exist in the interval containing the secant line. In
our experiments, the algorithm terminated if the absolute value of the slope
is greater than 1000. For the WSCC graph, however, this slope had to be
increased to 10,000 in order to find all the cutsizes.

In theory, the secant method should converge faster than the binary search
method. The secant method converges slower, however, because of the nature

7

Figure 3: Cutsize vs. Epsilon For IEEE 118 Bus

of the cutsize vs. ε function. The secant method performs better for con-
tinuous functions, and this function is not continuous. In the binary search
method, the search interval is always halved, regardless of the nature of the
function, as long as the function is monotonic.

Both functions still have limitations. Both algorithms can only estimate
values of ε to a certain precision. If one of the steps in the cutsize function is
sufficiently small, then neither algorithm will detect it, and one of the feasible
counts will be missed. This problem can be minimized if the algorithms were
allowed to run for more iterations. But no matter how many iterations the
program runs, it is always possible to construct a graph where the length of
the step is sufficiently small to go undetected.

4 Frequency Analysis

We used our techniques to find a bisection for each possible cutsize and list
edges in these bisections. We define the frequency of an edge as the number
of times it occurs throughout all bisections. The hypothesis regarding fre-
quencies is that the higher the frequency of an edge the higher the criticality
of that edge to network inhibition. The criticality of an edge is the extent to
which it inhibits the total flow through a network. We tested our hypothesis
on three benchmark networks: The IEEE 118 bus network which has 118
nodes and 179 edges, the IEEE 30 bus network which has 30 vertices and
41 edges, as well on the WSCC 179 network which has 179 nodes and 222
edges.

4.1 IEEE 118 Network Analysis

In the case of the IEEE 118 network, the edge (8,9) is in 100% of the bisections
and causes the most damage when removed alone. The flow loss due to

8

removal of this edge was 4.500014, which encompasses 14.02% of the flow
available to the network. Figure 4 shows the flow vs. frequency of each edge
when removed individually. Edge (8,9) is the obvious outlier with a frequency
of 17.

Figure 4: Flow vs. Frequency of the IEEE 118 Bus System

When any edge in the network is cut in conjunction with edge (8,9) the
combination inhibits the flow significantly. However, the variation of flow in
those inhibitions are within the interval of [4.50, 4.86]. There exist only two
cases in which the variation of flow is higher than 4.500019. This occurs when
edge (8,9) is cut with edge (110,111) or edge (86,87). We observe that edge
(110,111) is the sole connection to a generator of size .36 units. Also, edge
(86,87) is the sole connection to a generator of size .04 units. The variation
in flow when edge (8,9) is coupled with any edge other than edge (110,111)
or edge (86,87) is 0.00009. It can then be concluded that for this network
unless edge (8,9) is cut in conjunction with edge (110,111) or edge (86,87)
the flow will not be inhibited significantly in comparison to the cutting of
edge (8,9) alone.

We have not detected a bisection of size two, however, both edge (110,111)
and edge (86,87) have high frequencies and are within 50% of the bisections.
Despite the fact that the pairs {(8,9), (86, 87)} and {(8,9), (110, 111)} do not
appear in the cut set for a cutsize of two, the program uses the frequencies to
identify them as critical to inhibition of flow. Using this measure of criticality
we can decrease the number of edges considered when looking for the most
critical edges. There are 167 combinations of edges with (8,9). Restricting
the search to the edges that appear in the frequency list reduces the number
of edges to 76. Within this set we find that the only two edges that cause
significant loss of flow when coupled with edge (8,9) are found within the
upper half of the frequencies. Limiting the search to those edges that are
found within 50% of the frequencies reduces the number of combinations
to 28. Therefore, the utilization of this deduction could possibly decrease

9

the search time significantly and produce a solution in a reasonable time
period. This method of search for the combination of two most damaging
edges reduces the number of combinations to be considered by 83.2%.

4.2 IEEE 30 Network Analysis

The IEEE 30 Network follows a similar pattern. The edge (12,13) is found
within 100% of the bisections, connects the second largest generator (1.85
units) and its removal inhibits the flow by 22.52%. Figure 5 exhibits this.
The outlier on Figure 5 is the edge (12,13) with a frequency of 6.

Figure 5: Flow vs. Frequency of the IEEE 30 Bus System

The cutsize of one separates the second largest generator from the graph.
The largest generator in this network is of size 1.964 and accounts for 23.9%
of the generation available to the network. Another bisection isolates two
generators, including the largest generator, with a combined generation of
3.14. These generators can be identified as 1 and 2 on the figure in Appendix
4. This network differs form other networks we have studied, in that edge
(12,13) is the only edge that serves as the sole connector for a generator.
Therefore, the bisections clearly detect the edges that isolate the larger gen-
erators. A bisection of size 5 causes a total loss of 4.99 units or 60.75%. All
of the edges cut within the bisection of cutsize five have over 60% frequency.
When evaluating all edges connected to generators, we can only state that
those edges found within more than 16% of the bisections are those connected
to generators. However, all edges connecting generators to the network are
within the frequency list. By concentrating only on the frequency list of
edges one can reduce the search for critical edges by 46.34%.

4.3 WSCC Network Analysis

It is important to note that in the WSCC Network all of the generators are
only connected by a single edge as can be viewed in Appendix 4. In the
WSCC network the edge (75,76) connects the largest generator of weight
93.965, and when removed, it inhibits 25.88% of the flow. The graph of flow

10

vs. frequency can be viewed in Figure 6, which displays one extreme outlier
which is edge (75,76).

Figure 6: Flow vs. Frequency of the WSCC 179 Bus System

A valuable observation is that for any network removing a large generator
from the system can cause a large inhibition of flow. The WSCC Network
graph is even more indicative of the relation between edge frequency, critical
lines and generators. The inspection of edges that are found in 50% of
the bisections will indicate where the largest generators of the network are
located.

Figure 7 displays the direct relationship between the frequency of the
lines connected to generators and the size of those generators. We performed
simple linear regression on the this relationship. The correlation coefficient
between the generator size and frequency of edges connecting them is .67.
However, when you disregard the two outliers the correlation coefficient is
.95. If we perform a hypothesis test it is also found that there is a significant
linear relationship between generator size and the frequencies of the lines
connecting them to the network. In this case, we therefore conclude that
the analysis of frequency to find generators is highly efficient. However, the
connectivity of a network can clearly impact the relationship. It should be
noted this network has ideal connectivity for this method.

Figure 7: Frequency vs. Size of Generator

11

4.4 Final Remarks on Frequency Analysis

Because the objective is to minimize cut size and our bisections do not have to
be into two connected components, most solutions are combinations of single
line bisections. Hence, in the networks tested on, an edge can be initially
recognized to be within a direct path to a generator if it is found in 100% of
the bisections. In both the 30 and 179 networks the largest generator that is
connected by only one edge to the network is within the cutsize of one and is
found within 100% of the bisections. In the IEEE 118 bus Network, the edge
(8,9) is in a path of two edges which are the sole connection of the second
largest generator within the network.

The reason some generators are not partitioned from the graph until
higher cutsizes can be understood.

The program begins by removing the least amount of edges that inhibit
the flow and partition a given generator. Some generators are of a high degree
meaning they have many edges connecting them to the graph. Therefore, a
higher cutsize constraint is needed to remove them. However, in most cases
it was observed that the larger generators were partitioned from the network
by cutting of edges with high frequencies.

A principal relation between frequency and criticality of edges lies within
the analysis of the connectivity of the generators to the graph. If an edge
is within a path that is crucial to a generator’s performance of pushing flow
through a network then it is critical. Through the bisection of graphs and
the identification of edges with higher frequencies edges within a network
that would cut off generators can be found. Going through a network by
brute force and removing all combinations of edges can be an arduous task.
Our technique can reduce that task significantly. For instance, if edge (i, j)
is cut within a bisection and has frequency above some value, it could be
considered an edge within a vulnerable area of a network. However, in most
cases of larger graphs the frequency list alone will reduce the amount of
edges that must be checked within a network. Depending on the weight of
importance given to time and error, this method could be sufficient as it has
the capability of reducing the time to find critical edges in a network.

5 Linear Optimization for Edge Expendabil-

ity

In [7], Pinar, Reichert, and Lesieutre attempt to find criticality of power lines
in the IEEE 30 Bus and 118 Bus systems by computing the expendability
of a line. The less expendable a line is, the more critical it is to a system.
Using a parameterization of the continuous version of the problem and solving
power flow equations, they compute a relative importance of edges. A similar
problem can be solved for our graph theoretical formulation. To compute the
criticality of the lines, we formulate the following optimization problem:

12

min ||x||
s.t. Ax = b

−u ≤ x ≤ u,

where A is the node-arc incidence matrix of a graph, b is a vector of supply
and demand values of nodes, x is a vector whose values xi represent the
flow going through edge i, and u is a vector of edge capacities. Edges are
allowed to have negative flows, as sign represents the direction of power flow.
By choosing an appropriate norm to minimize, the function finds a flow that
satisfies supply and demand and gives a relative expendability value of edges.
The closer to capacity an edge is used, the less expendable it is.

5.1 Results

The optimization problem is solved using Matlab’s fmincon function, a con-
strained nonlinear solver using 2-, 3-, and 4-norms for ‖x‖. Running time
on averages between two and three minutes for the 118-Bus system. It is
important to note that the solution method is not optimized for the prob-
lem: fmincon is a general nonlinear solver, whereas all of our constraints are
linear. In the case of the 2-norm, the problem could be solved more quickly
as a linearly constrained least squares problem.

Both the 30 Bus and the 118 Bus systems have especially vulnerable
generators. In both graphs, the generators with greatest supply value have
small connectivity, while most edges cause an insignificant amount of flow
loss when removed from the network. The 2, 3, and 4 norms assign the most
flow to the most critical edge. Beyond the edges that cause a significant
amount of damage, the solution does not give meaningful results. Edges that
cause identical amounts of damage to the network are assigned completely
different values. For small graphs, computing criticality of all edges is possible
through enumeration of all possibilities. Criticality of each edge is computed
by removing the edge from the network and finding the maximum flow on
the modified network.

Figure 8 plots the results of this enumeration vs the flow value assigned
to each edge by the linear squeeze function using the 4-norm. We see in both
that the most significant edge is an outlier, with the rest of the edge having
little correlation.

Results for the two other norms on the 118-Bus and results for the 30-Bus
, with the most critical line being found and all others having no correlation
with their flow assignment xi.

While this method successfully finds the most critical edge in these net-
works, we can see mathematically why there is little correlation between
criticality of edges and the flow value assigned to them by this optimization
problem. The constraints are reasonable for the problem. The supply and

13

Figure 8: 30-Bus and 118-Bus Matlab Optimization Results Using 4-Norm

demand of the network should be satisfied, and edges cannot carry more en-
ergy than their capacity allows. The problem lies in the objective function.
In the 30-bus network, the edge that has the most flow is the generator with
high capacity and low connectivity. Because its flow travels through a single
edge, the xi that corresponds to that edge must have a flow value equal to
the supply value of the generator it connects when minimizing ||x||. With
further research, a similar optimization problem with a more well-defined
norm may yield better results for line criticality. It would also be inter-
esting to investigate the relation between line criticalities and multiple line
contingencies.

6 Conclusions

This research investigated different methods for determining the criticality of
power lines in the electric power grid network. Because of the computational
limitations of the network inhibition problem, we considered the inhibiting
bisection problem–an effective reformulation. Thus far, it has been proven
that the edges cut in a bisection of a network accurately identify the most
critical network lines. An in-depth analysis of the most frequently cut edges
in network bisections generated these expected results. In every bisection of

14

each of the three graphs, we conclusively found that the most frequently cut
edge was the one connected to the largest generator.

While the inhibiting bisection problem correctly detects the most critical
lines in a network, there exist limitations to this approach. Because this prob-
lem seeks only bisections of networks, the set of edges cut in each bisection
contains some edges that carry little to no importance in terms of criticality.
Ultimately, the inhibiting bisection problem generates the intended results;
however, it also provides extraneous information that does not provide in-
sight as to which edges are the most critical to the network. Despite this
limitation, the inhibiting bisection problem is an effective method for the
purposes of this research.

Appendix 1: Frequencies for the IEEE-30 Sys-

tem

Frequencies of each edge.

(11, 12) 6

(0, 2) 5

(1, 3) 5

(4, 6) 5

(1, 5) 4

(9, 21) 4

(14, 22) 4

(20, 21) 4

(26, 27) 3

(26, 28) 3

(26, 29) 3

(21, 23) 2

(22, 23) 2

(24, 26) 1

(3, 5) 1

(5, 6) 1

(5, 7) 1

(5, 9) 1

(7, 27) 1

(8, 9) 1

(23, 24) 1

(24, 25) 1

15

Appendix 2: Frequencies for the IEEE-118 Sys-

tem

Frequencies of each edge.

Edge Frequency Edge Frequency Edge Frequency

(7, 8) 17 (46, 48) 7 (36, 39) 1

(22, 24) 16 (47, 48) 7 (69, 70) 1

(24, 26) 16 (48, 49) 7 (70, 71) 1

(25, 29) 15 (48, 50) 7 (70, 72) 1

(88, 89) 15 (48, 53) 7

(88, 91) 15 (98, 99) 6

(37, 64) 13 (48, 68) 5

(61, 65) 13 (97, 99) 5

(65, 66) 13 (99, 102) 4

(84, 88) 13 (102, 103) 4

(87, 88) 13 (102, 104) 4

(46, 68) 12 (102, 109) 4

(67, 115) 12 (63, 64) 3

(68, 69) 12 (1, 11) 3

(68, 74) 12 (2, 11) 3

(68, 76) 12 (6, 11) 3

(76, 79) 12 (10, 11) 3

(78, 79) 12 (11, 13) 3

(79, 95) 12 (11, 15) 3

(79, 96) 12 (11, 116) 3

(58, 60) 11 (64, 67) 2

(58, 62) 11 (81, 82) 2

(59, 60) 11 (85, 86) 2

(79, 98) 10 (59, 61) 1

(60, 61) 10 (2, 4) 1

(79, 97) 9 (3, 4) 1

(109, 110) 9 (4, 5) 1

(91, 99) 8 (4, 7) 1

(93, 99) 8 (4, 10) 1

(99, 100) 8 (7, 29) 1

(99, 103) 8 (16, 29) 1

(99, 105) 8 (32, 36) 1

(48, 65) 7 (33, 36) 1

(41, 48) 7 (34, 36) 1

16

(44, 48) 7 (36, 38) 1

Appendix 3: Frequencies for the WSCC-179

System

Frequencies of each edge.

Edge Frequency Edge Frequency Edge Frequency

(74, 75) 29 (17, 21) 1 (81, 168) 1

(77, 78) 28 (17, 23) 1 (81, 170) 1

(32, 33) 27 (25, 137) 1 (82, 83) 1

(28, 29) 26 (29, 30) 1 (102, 132) 1

(116, 117) 25 (31, 32) 1 (102, 133) 1

(138, 139) 24 (35, 36) 1 (106, 131) 1

(63, 64) 23 (35, 54) 1 (106, 133) 1

(13, 14) 22 (35, 62) 1 (106, 172) 1

(147, 148) 21 (36, 46) 1 (106, 174) 1

(6, 7) 20 (37, 44) 1 (106, 176) 1

(3, 9) 19 (37, 46) 1 (109, 118) 1

(42, 43) 18 (37, 57) 1 (109, 171) 1

(10, 11) 17 (37, 58) 1 (111, 112) 1

(142, 143) 17 (40, 48) 1 (113, 123) 1

(145, 146) 15 (40, 55) 1 (113, 125) 1

(156, 157) 15 (40, 56) 1 (113, 126) 1

(34, 83) 14 (46, 47) 1 (113, 128) 1

(66, 68) 13 (49, 50) 1 (117, 121) 1

(110, 111) 12 (49, 51) 1 (117, 127) 1

(3, 4) 11 (50, 61) 1 (117, 129) 1

(136, 137) 10 (51, 61) 1 (117, 130) 1

(15, 16) 9 (53, 54) 1 (117, 132) 1

(0, 2) 8 (61, 62) 1 (137, 145) 1

(100, 101) 7 (62, 137) 1 (140, 145) 1

(114, 115) 6 (62, 140) 1 (140, 151) 1

(159, 160) 5 (67, 70) 1 (141, 144) 1

(40, 41) 3 (69, 70) 1 (143, 144) 1

(37, 38) 2 (72, 76) 1 (151, 152) 1

(45, 46) 2 (80, 85) 1 (161, 162) 1

(0, 1) 1 (80, 89) 1

(1, 6) 1 (80, 93) 1

(5, 6) 1 (81, 87) 1

17

(6, 161) 1 (81, 92) 1

(10, 18) 1 (81, 96) 1

(10, 20) 1 (81, 166) 1

Appendix 4: Visualization of Networks

Figure 9: IEEE 30 System

18

Figure 10: IEEE 118 System

Figure 11: WSCC 179 System

19

7 Acknowledgements

We would like to thank our director, Dr. Ricardo Cortez, and graduate
assistant Edgar Lobaton.
This work was supported by National Security Agency (NSA) grant H98230-
07-1-0084 and also received funding from the host institution The Mathe-
matical Sciences Research Institute (MSRI). Ali Pinar and Juan Meza was
supported by the Director, Office of Science, Division of Mathematical, In-
formation, and Computational Sciences of U.S. Department of Energy under
contract DE-AC03-76SF00098.

References

[1] T. Aura, M. Bishop, and D. Sniegowski. Analyzing Single-Server Network
Inhibition. Computer Security Foundations Workshop, 2000.

[2] Yuri Boykov and Vladimir Kolmogorov. An Experimental Comparison
of Min-Cut/Max-Flow Algorithms for Energy Minimization in Vision. In
Energy Minimization Methods in Computer Vision and Pattern Recogni-
tion, pages 359–374, 2001.

[3] Canada-U.S. Power System Outage Task Force. Interim Report: Causes
of the August 14th Blackout in the United States and Canada. Technical
report, 2003.

[4] M.T. Heath. Scientific computing: an introductory survey. McGraw-Hill,
2002.

[5] Cynthia A. Phillips. The Network Inhibition Problem. In STOC ’93: Pro-
ceedings of the twenty-fifth annual ACM symposium on Theory of com-
puting, pages 776–785, New York, NY, USA, 1993. ACM Press.

[6] A. Pinar, Y. Fogel, and B. Lesieutre. The Inhibiting Bisection Problem.
Submitted to ACM 19th Symposium Parallel Algorithms and Architec-
tures(SPAA) 2007.

[7] A. Pinar, A. Reichert, and B. Lesieutre. Computing Criticality of Lines in
Power Systems. IEEE International Symposium on Circuits and Systems,
2007.

20

